

Attachment and Entry

Session 5 Virology Live Fall 2021

Who hath deceived thee so often as thyself?
--BENJAMIN FRANKLIN

Viruses are obligate intracellular parasites

Virus particles are too large to diffuse across the plasma membrane

Finding the 'right' cell receptor

- Step 1: adhere to cell surface (random collisions & electrostatics)
 - No specificity
- Step 2: Attach to specific receptor molecules on cell surface
 - More than one receptor may be involved
- Step 3: Transfer genome inside the cell

Cellular receptors for viruses

- Essential for all viruses except those of fungi (no extracellular phases) and plants (enter cells by mechanical damage)
- 1985: one receptor known, sialic acid for influenza virus

Enabling technologies

Recombinant DNA

Monoclonal antibodies

Flow cytometry

Nucleotide sequencing

siRNA

CRISPR/Cas9

mRNA AAAAA

Criteria for identifying cell receptors for viruses

- Receptor binds virus particle
- Antibody to receptor blocks infection
- Receptor gene confers susceptibility
 - More than one receptor may be involved
- Disruption of receptor gene blocks infection

ACE2 is receptor for SARS-CoV-2

Different viruses can bind the same receptor

- Adenovirus and Coxsackievirus B3 have common primary receptor
- The swine herpesvirus, pseudorabies virus, binds same receptor as human poliovirus

Viruses of the same family may bind different receptors

- Rhinoviruses (3), retroviruses (16)
- One virus may bind multiple receptors

Virology Live 2021 • Vincent Racaniello

How do virus particles attach to receptors?

Virology Live 2021 • Vincent Racaniello

©Principles of Virology, ASM Press

Adenovirus

http://pdb101.rcsb.org/motm/132

Influenza virus attachment to cells

Sialic acid: receptor for influenza viruses

- Sialic acids: N-acetylneuraminic acid (A,B); 9-O-acetyl-N-neuraminic acid (C)
- $\alpha(2,6)$ preferentially bound by human strains, $\alpha(2,3)$ by avian

HIV-1 attachment

Virology Live 2021 • Vincent Racaniello

SARS-CoV-2 attachment

Receptor binding domain (ACE2)

Coronavirus cell receptors

HCoV-229E Human amino peptidase N

HCoV-NL63 Angiotensin converting enzyme 2HCoV-OC43 N-acetyl-9-O-acetylneuraminic acidSARS-CoV Angiotensin converting enzyme 2

MERS-CoV Dipeptidyl peptidase 4

SARS-CoV-2 Angiotensin converting enzyme 2

Go to:

b.socrative.com/login/student room number: virus

Viral receptors on the cell surface:

- A. Can bind directly to icosahedral virus capsid proteins
- B. Interact with glycoproteins of enveloped viruses
- C. Can be carbohydrate or protein molecules
- D. Have cellular functions
- E. All of the above

Entry into cells

Virology Live 2021 • Vincent Racaniello

https://ccsb.scripps.edu/goodsell/

The cytoplasm is crowded!

Movement of large protein complexes will not occur by diffusion!

Fusion of viral and host cell membranes mediated by viral fusion proteins

Movement of endosomes

XVIVO Scientific Animation http://www.xvivo.net/

Entry at plasma membrane

HIV-1

HIV-1 Env mediated fusion

Virology Live 2021 • Vincent Racaniello https://youtu.be/51z2dwdOLUE

Go to:

b.socrative.com/login/student room number: virus

Which of the following does not play a role in virus entry:

- A. Clathrin-mediated endocytosis
- B. Fusion of viral and plasma membranes
- C. Diffusion of virus particles in the cytoplasm
- D. Microtubule-mediated transport
- E. Sialic acids

Influenza virus membrane fusion

Three states of influenza virus HA

Virology Live 2021 • Vincent Racaniello

©Principles of Virology, ASM Press

Class I fusion proteins

- Perpendicular to membrane - spikes
- Mostly α-helical
- Form trimers

Virology Live 2021 • Vincent Racaniello ©Principles of Virology, ASM Press

Influenza virus entry

Class II fusion proteins

- Mostly β-sheet
- Form dimers
- Parallel to the membrane

Dengue virus entry

Ebolavirus entry

Virology Live 2021 • Vincent Racaniello

Fusion is regulated

- Must not occur in the wrong location
- Neutral pH (plasma membrane)

Endosome fusion receptor

Go to:

b.socrative.com/login/student room number: virus

Viral fusion peptides are exposed for insertion into the host cell membrane when:

- A. The virus particle is near a cell
- B. The virus particle is in the cytoplasm
- C. Trimers of the fusion peptides form
- D. The endosome becomes acidified
- E. The virus is docked on the nuclear pore

Adenovirus

How are genomes released from non-enveloped viruses?

Virology Live 2021 • Vincent Racaniello ©Principles of Virology, ASM Press

Uncoating of adenovirus at nuclear pore complex

"Umbilicus" connector

Calicivirus portal on receptor engagement

For poliovirus and calicivirus, only one portal is formed

Reovirus entry

Virology Live 2021 • Vincent Racaniello

©Principles of Virology, ASM Press

Virology Live 2021 • Vincent Racaniello

Four modes of nuclear entry

Virology Live 2021 • Vincent Racaniello

Receptor polymorphism and susceptibility Rhinovirus receptors

• HRV A, B: 90 serotypes, ICAM-1; 10 serotypes LDLR

• HRV C: 49 genotypes, CDHR3

HRV-C

- 529Y in CDHR3 linked to increased surface production, increased risk of wheezing illnesses and hospitalization for childhood asthma
- Cells with CCHR3 529Y have 10x increased HRV-C binding and yields
- Risk factor for HRV-C wheezing illnesses
- 2013 outbreak of HRV-C in chimpanzees, Uganda: all homozygous 529Y
- Only humans have 529C, recently selected as Neanderthal and Denisovans have 529Y

Betty

Next time: RNA directed RNA synthesis