

Transcription and RNA processing

Session 7 Virology Live Fall 2021

In common to all the viruses in red: they have dsDNA in their reproductive cycles

In cells infected with DNA viruses, at least one protein, often many, are needed for DNA replication

But not all DNA templates are ready for transcription!

Some viral DNA genomes must first be converted to templates for transcription

Which viral genomes do not need conversion?

Virology Live 2021 • Vincent Racaniello

Eukaryotic DNA-dependent RNA polymerases

All initiate RNA synthesis de novo (no primer needed)

Enzyme	Cellular RNA	Viral RNA
RNA pol I	Pre-rRNA	None known
RNA pol II	Pre-mRNA Pri-miRNA SnRNA LncRNA	Pre-mRNA Pri-miRNA HDV genome RNA and mRNA HHV8 PAN RNA
RNA pol III	Pre-tRNAs 5S rRNA U6 snRNA	Ad-2 VA RNAs HBoV1 Boca SR MHV68 pri-miRNA

Only DNA viruses that replicate in cytoplasm (poxvirus, giant viruses) encode an RNA pol

Regulatory sequences in transcriptional control regions

Initiation of transcription by RNA polll

Proteins that regulate transcription

- Host and/or virus sequence-specific DNA binding proteins
- Viral co-activating molecules (do not bind DNA but can modulate transcription) also required
- Many co-activators modulate structure/activity of nucleosomal templates (i.e. histone methylation or acetylation)

Modular organization of sequence-specific transcriptional activators

N \square					C
	DNA binding	Dimer formation	NLS	Activation	
	Zn finger Helix-turn-helix Basic	Leucine zipper		Acidic Glutamine rich Proline rich Isoleucine rich	

Go to:

b.socrative.com/login/student room number: virus

What is the first biosynthetic event that occurs in cells infected with dsDNA viruses?

- A. Membrane fusion
- B. Transcription
- C. DNA replication
- D. Protein synthesis
- E. All of the above

Strategies of transcription of viral DNA

Origin of transcriptional components	Virus	
Host only	Retroviruses with simple genomes Caulimoviruses Circoviruses	
Host plus one viral protein		
Viral protein transcribes late genes	Bacteriophages T3, T7	
Viral protein regulates transcription	Hepadnaviruses, parvoviruses, papillomaviruses, polyomaviruses, retroviruses with complex genomes	
Host plus >1 viral protein that stimulate transcription	Adenoviruses, herpesviruses	
Viral	Mimiviruses, Poxviruses	

Recognition of viral promoters!

Regulation of transcription by viral proteins

Virology Live 2021 • Vincent Racaniello

©Principles of Virology, ASM Press

Viral transcriptional programs: SV40

Regulation of SV40 late promoter by cellular repressors

Adenovirus transcriptional regulation

- Three viral proteins and DNA synthesis govern phase transitions
- E1A necessary for transcription of all E transcription units (frees E2f)
- E2 required for DNA synthesis and entry into L phase, increases initiation from major late promoter
- IVa2 enhances L gene transcription

Stimulation of transcription by Ad E1A proteins

Adenovirus transcription units

Herpesvirus transcriptional programs

- Initiated by VP16, a virion associated protein (differs from Py, Ad)
- Activates IE transcription promoter poorly recognized by cell transcription machinery
- IE proteins control transcription from all virus genes
- Expression of E genes and DNA synthesis
- Expression of L genes, DNA dependency
- Ensures coordinated production of DNA genomes and structural proteins

Go to:

b.socrative.com/login/student room number: virus

Adenovirus E1A protein stimulating the expression of adenovirus E2 protein which then stimulates the expression of adenovirus IVa2 & L4 protein is an example of:

- A. A negative autoregulatory loop
- B. Repression of gene expression
- C. Cascade regulation
- D. Dimerization

Modification of mRNA: 5'-cap structure

Virology Live 2021 • Vincent Racaniello

©Principles of Virology, ASM Press

Co-transcriptional capping

Virology Live 2021 • Vincent Racaniello

Modification of mRNA: Cleavage and polyadenylation

©Principles of Virology, ASM Press

Addition of poly(A) to viral mRNAs

Mechanism	Enzyme	Viruses
Post-transcriptional		
Cleavage of pre-mRNA followed by polyadenylation	Cellular	Adenovirus, HBV, HDV, herpesviruses, polyomavirus, retrovirus
During mRNA synthesis		
Reiterative copying at stretches of U in template RNA	Viral	Influenza virus, VSV
Copying of long U stretch in template RNA	Viral	Poliovirus, alphavirus

Discovery of mRNA splicing in adenovirus infected cells

Tripartite leader

sequence

body

Virology Live 2021 • Vincent Racaniello

Phillip A. Sharp for their discovery of split genes

©Principles of Virology, ASM Press

Constitutive and alternative splicing

A Constitutive splicing

B Alternative splicing

Alternative 5' splice sites

Alternative 3' splice sites

Go to:

b.socrative.com/login/student room number: virus

Which statement about polyadenylation of DNA virus mRNAs is correct?

- A. It always occurs in the cytoplasm
- B. It occurs after cleavage of pre-mRNA
- C. Poly(A) is added at the 5'-end of pre-mRNA
- D. Is specified by a stretch of U residues in the template

Splicing marks mRNAs for nuclear export

Cellular pre-mRNA

components of nuclear export pathway

Export of unspliced retroviral mRNA

Unspliced retroviral RNA

Cellular pre-mRNA

CTE = Constitutive transport element

Rev protein regulates export of HIV mRNA

Splicing = Value added

- Alternative splicing creates different mRNAs, proteins
- Coding information of a small DNA genome is expanded
- Regulation of gene expression

RNA editing

Noncoding RNAs

- Besides tRNAs and rRNAs, eukaryotic cells contain a large repertoire of noncoding RNAs
- Most human transcripts do not encode proteins
- Classified into short (<200 bases) and long (>200 bases)
- Perform a variety of regulatory functions
- Viral genomes contain noncoding RNAs

IncRNAs

circRNAs

Synthesis and function of miRNAs

Liver-specific miR-122 promotes hepatitis C virus replication

Virology Live 2021 • Vincent Racaniello

Polyomavirus miRNA may promote persistence

Both miRNAs are perfectly complementary to specific sequences in the early mRNAs that encode LT and induce its cleavage.

Effect of IncRNAs on virus reproduction

Circular RNAs (circRNAs) produced by back-splicing

Highly abundant in uninfected and some virus-infected cells

Reversible N6 methylation of internal adenosine nucleosides

N6A writers, readers, and erasers

DNA genomes

Next time: Viral DNA replication