

Viral DNA Replication

Lecture 8
Virology Live
Fall 2021

The more the merrier

--ANONYMOUS

Viral DNA genomes must be replicated to make new progeny

Viral DNA replication is always delayed after infection!

Universal rules of DNA replication

- DNA is synthesized by template-directed incorporation of dNMPs into 3'-OH of DNA chain
- DNA is always synthesized 5'-3' via semiconservative replication (two daughter strands)
- Replication initiates at specific sites on template called origins
- Catalyzed by DdDp + accessory proteins
- May be primer-dependent or primer-independent

Primer-independent DNA polymerase: Dogma overturned

DNA polymerase encoded in genome of bacteriophage NrS-1 Infects bacteria that inhabit deep-sea vents

Direction Of Chain Growth

What does the host cell provide?

- Viral DNA replication always requires synthesis of at least one viral protein, sometimes many (hence delayed after infection)
- Viruses with small genomes require more host proteins smaller genomes
- Viruses with larger genomes (poxviruses and mimiviruses) encode all proteins needed for DNA synthesis

Where does the polymerase come from?

- Small DNA viruses do not encode an entire replication system
 - Encode proteins that orchestrate the host
 - Papillomaviridae, Polyomaviridae, Parvoviridae

- Large DNA viruses encode most of their own replication systems
 - Herpesviridae, Adenoviridae, Poxviridae

Viral proteins involved in DNA replication

- DNA polymerases and accessory proteins
- Origin binding protein, helicases
- Exonucleases
- Enzymes of nucleic acid metabolism (thymidine kinase, ribonucleotide reductase, dUTPase)

Go to:

b.socrative.com/login/student room number: virus

Which statement about viral DNA synthesis is NOT correct?

- A. Large DNA viruses encode many proteins involved in DNA synthesis
- B. Small DNA viruses encode at least one protein involved in DNA synthesis
- C. Viral DNA replication is usually delayed after infection because it requires the synthesis of at least one viral protein
- D. All DNA polymerases are primer-dependent

Diverse structures of viral DNAs

Two mechanisms of dsDNA synthesis

The 5'-end problem

Lessons from SV40

Semi-discontinuous DNA synthesis from a bidirectional origin

No end problem!

Origin of SV40 DNA replication

Recognition and unwinding of SV40 origin

Synthesis of leading and lagging strands

Synthesis of leading and lagging strands

©Principles of Virology, ASM Press

SV40 DNA replication machine

Function of topoisomerases

Go to:

b.socrative.com/login/student room number: virus

The SV40 genome is a circular dsDNA. Which statement about its replication is correct?

- A. Viral Tantigen binds and unwinds the ori
- B. Replication is bidirectional from a single ori
- C. The 5'-end problem is solved
- D. Has leading and lagging strand synthesis
- E. All of the above

DNA priming: Parvoviruses

DNA priming: Parvoviruses

- Replication is continuous
- No pol α, uses ITR to self-prime
- Requires pol δ , RF-C and PCNA
- Rep78/68 proteins are required for initiation and resolution: endonuclease, helicase, binds 5'-terminus
- No replication fork, strand displacement

Protein priming: Adenovirus

- Origins at both ends
- Strand displacement synthesis

Protein priming: Adenovirus

Ad DNA pol links α-phosphoryl of dCMP to OH of Ser residue only when pTP is assembled with DNA pol into preinitiation complex at ori

No end problem!

Adenoviral ssDNA binding protein

Go to:

b.socrative.com/login/student room number: virus

How is DNA replication of parvovirus and adenovirus similar?

- A. They both require protein-linked primers
- B. Replication occurs by strand displacement
- C. DNA synthesis occurs in the cytoplasm
- D. A replication fork occurs in both
- E. None of the above

Herpes simplex virus

- UL5, 8 and 53 primase
- UL42 processivity protein
- UL9 origin binding protein
- UL29 ssDNA binding protein
- UL30 DNA polymerase

- 2 oriS and a unique oriL sequence
- DNA enters as a linear molecule and converts to circle
- Replicates as rolling circle

Initiation of herpesvirus DNA replication

Host proteins are responsible for circularization

Rolling circle replication

No end problem!

- All viruses discussed replicate in nucleus
- Poxviruses replicate in cytoplasm
- Encode all proteins needed for DNA replication

Poxvirus DNA factories

Poxvirus DNA replication

At least 15 viral proteins involved in viral DNA synthesis

No end problem!

Go to:

b.socrative.com/login/student room number: virus

What makes poxvirus DNA replication different from all of the other viruses we discussed today?

- A. The complete replication machinery is encoded by the viral genome
- B. DNA synthesis occurs in the cytoplasm
- C. DNA synthesis occurs by strand displacement
- D. None of the above

Viral origins Ori TRL UL IRLIRS US TRS OriL OriS Short region (126 kb) Short region (26 kb)

- AT-rich segments recognized by viral origin recognition proteins
- Assembly points for multi-protein DNA replication machines
- Some viral genomes have one ori; others up to 3

Viral origins of DNA replication

Viral origin recognition proteins

- Polyomavirus T binds specifically to DNA
- Parvovirus Rep68/78 binds at ends and unwinds DNA, also involved in terminal resolution
- Adenovirus pTP binds at terminus and recruits DNA pol
- Herpesvirus UL9 protein recruits viral proteins to AT-rich ori and then unwinds DNA

Structural homology among DNA binding domains of viral origin recognition proteins

SV40 large T

- T is a species-specific DBP/OBP
 - Pre-initiation complexes do not form in the wrong species
 - Failure to interact with DNA pol α primase
- Binds and sequesters cell cycle regulators
 - Causes cells to enter S phase

Regulation of DNA synthesis

- Most of our cells do not divide or do so rarely
- Viruses do not replicate well in quiescent cells
- Viruses must induce host replication proteins
- Done by virus encoded early gene products

- Cellular retinoblastoma (rb) gene
- Rb protein controls entry into S
- Rb loss associated with tumors = tumor suppressor gene

Abrogation of Rb by viral proteins

(needed for DNA synthesis, and to pass through cell cycle)

Next time: Reverse transcription and integration