

#### Intrinsic and innate defenses

Session 13 Virology Live Fall 2021

The trouble with facts is that there are so many of them

-Anonymous

#### **Host defenses**



#### **Host defenses**

- Intrinsic
  - Always present in the uninfected cell
  - Apoptosis, autophagy, RNA silencing, antiviral proteins
- Innate immune system: Induced by infection
- Adaptive immune system: Tailored to pathogen



#### **RNA** interference

Plant & invertebrate cells

Mammals - present or not needed?

Countermeasures!



#### **APOBEC3 and HIV-1**

(Apolipoprotein B mRNA editing catalytic polypeptide)





Principles of Virology, ASM Press Virology 479-480 (2015) 131–145

## **Epigenetic silencing**





Pml bodies

Countermeasures encoded in many viral genomes

**HCMV** pp71 causes degradation of cell Daxx, needed for histone deacetylation

EBV Ebna5, Ad E4 Orf3 affect Pml protein localization or synthesis

Unintegrated but not integrated retroviral DNA is silenced

## **Apoptosis**





Apoptosis is monitored by sentinel cells

Principles of Virology, ASM Press

## Viral regulators of apoptosis



Virology Live 2021 • Vincent Racaniello Principles of Virology, ASM Press

#### **Ancient intrinsic defense: CRISPR**

Clustered regularly interspaced short palindromic repeats



90% of Archaea 50% of Bacteria

Principles of Virology, ASM Press

#### Go to:

## b.socrative.com/login/student room number: virus

Intrinsic defenses are always present. Which of the following are included?

- A. Antibodies
- B. T cells
- C. Epigenetic silencing
- D. Skin
- E. Mucus

#### Innate immune system



- Activated within minutes to hours after infection
- Cytokines, sentinel cells (dendritic cells, macrophages, NK cells), complement
- Can inform adaptive response when infection reaches dangerous threshold

## How does the innate system recognize microbes and not self?

- 1980: Nusslein-Volhard and Wieschaus identify gene involved in establishing dorsal-ventral axis in *Drosophila* embryos. Called *Toll* gene. Nobel Prize, 1995 ("Das war ja toll!")
- 1996: Toll found to have a role in immunity of fly to microbes
- 1997: Toll-like receptors identified in mammals



#### C/N/R/TLRs - Pattern recognition receptors (PRR)



## Recognition of PAMPS (pathogen-associated molecular patterns





Virology Live 2021 • Vincent Racaniello

Principles of Virology, ASM Press

## **Sensing DNA**



## Viral modulators of sensing



Principles of Virology, ASM Press

#### Go to:

## b.socrative.com/login/student room number: virus

Which of the following allow the innate immune system to distinguish microbes from self?

- A. Cytoplasmic helicases and TLRs
- B. Antibodies
- C. Apoptosis
- D. Apobec
- E. All of the above

#### **Interferons**

- 1957: Issacs & Lindenmann; chicken cells exposed to non-infectious influenza virus produce substance that "interfered" with infection of other cells
- Produced by virus-infected cells and uninfected sentinel cells in response to products released from cells (e.g. viral nucleic acid)



Principles of Virology, ASM Press

#### Interferons



Virology Live 2021 • Vincent Racaniello Principles of Virology, ASM Press

## IFN signal transduction

- Production of IFN $\alpha/\beta$  is rapid: within hours of infection, declines by 10 h
- IFN binding to IFN receptors leads to synthesis of >1000 cell proteins (ISGs, IFN stimulated genes)
- Mechanisms of most ISGs not known



Virology Live 2021 • Vincent Racaniello Principles of Virology, ASM Press

## Endogenous retrovirus LTRs regulate the interferon response



TWiV 382: Everyone's a little bit viral microbe.tv/twiv/twiv-382

## Tetherin, CD317



HIV-1 Vpu protein is a tetherin antagonist

## Interferon-induced proteins: IFIT1



Virology Live 2021 • Vincent Racaniello Principles of Virology, ASM Press

### **Escape from IFIT1**



## Interferon-induced proteins: IFITM3

Inhibition of fusion during virus entry







Virology Live 2021 • Vincent Racaniello EMBO Reports (2017) 18: 1740–1751

## The IFN system is dangerous



- IFN induces the expression of many deleterious gene products most of our cells have IFN receptors
- IFNs have dramatic physiological consequences: fever, chills, nausea, malaise
- Every viral infection results in IFN production, one reason why 'flu-like' symptoms are so common

#### Go to:

## b.socrative.com/login/student room number: virus

How do interferons (IFNs) limit viral replication?

- A. IFNs directly inhibit viral translation
- B. IFNs lyse viral particles
- C. IFNs induce ISGs
- D. IFNs damage cells
- E. None of the above

#### **Sentinel cells**

- Dendritic cells, macrophages, natural killer (NK) cells
- They patrol all our tissues looking for signs of change





#### **Dendritic Cells**





Fields Virology, Wolters Kluwer

#### **DCs**



Virology Live 2021 • Vincent Racaniello Principles of Virology, ASM Press

#### **DCs**



Virology Live 2021 • Vincent Racaniello Principles of Virology, ASM Press

#### **NK cells**



Yes, there are viral modulators of NK cells



Principles of Virology, ASM Press

### Complement



Yes, there are viral modulators

### Infection leads to the inflammatory response



- Infected cells produce cytokines & chemokines
- Redness; pain; heat; swelling, the four classic signs of inflammation (rubor, dolor, calor, tumor, originally recorded by the Roman medical encyclopedist Celsus in the first century AD)
- Increased blood flow, increased capillary permeability, influx of phagocytic cells, tissue damage

## Three classes of cytokines

| Group            | Some members           | Activity                     |
|------------------|------------------------|------------------------------|
| Proinflammatory  | IL-1, Tnf, IL-6, IL-12 | Promote leukocyte activation |
| Antiinflammatory | IL-10, IL-4, Tgf-β     | Suppress PICs                |
| Chemokines       | IL-8                   | Recruit immune cells         |





Initially function locally in antiviral defense
In larger quantities, enter circulation, have global
effects (sleepiness, lethargy, muscle pain, no
appetite, nausea)

A localized viral infection produces global effects





## **Viral Cytokine Countermeasures**

| Interrupt cytokine production                   | Interfere with cytokine action                            | Interfere with cytokine effector function |
|-------------------------------------------------|-----------------------------------------------------------|-------------------------------------------|
| Interfere with cytokine and chemokine synthesis | Encode homologs of cytokines<br>to block receptors        | Alter cytokine signaling pathway          |
| Inhibit generation of functional cytokines      | Encode soluble cytokine receptors to neutralize cytokines |                                           |

## Inflammation usually stimulates potent immune responses

- Cytopathic viruses cause inflammation because they promote cell and tissue damage
  - Activate the innate response
- Consequently cytopathic viral genomes encode proteins that modulate this immune response
  - Adenoviruses, herpesviruses, poxviruses







#### Some viruses do not stimulate inflammation

- Typically non-cytopathic viruses
  - Cells are not damaged, no apoptosis/necrosis
  - Low or ineffective innate immune response
  - Do not effectively activate adaptive immune response



- Persistent infections: rarely or inefficiently cleared





#### The lesson



- The classic inflammatory response (heat, swelling, redness, pain)
   reflects the communication of innate and adaptive immune defense
  - No inflammatory response, ineffective adaptive response
- One reason for using inflammation-stimulating adjuvants for noninfectious vaccines

## Not all inflammation is caused by infection!



An important component of smallpox vaccine efficacy!

# Viral countermeasures

All viruses must encode at least one regulator of intrinsic/innate defenses

Sensing, IFN production, IFN signal transduction, cytokines, chemokines, NK cells, DCs, complement



Virology Live 2021 • Vincent Racaniello Principles of Virology, ASM Press



**Next time: Adaptive immunity**