

#### **Adaptive Immunity**

Session 14 Virology Live Fall 2021

Life is simple, but we insist on making it complicated –Confucius

#### **Host defenses**

- Intrinsic
  - Always present in the uninfected cell
  - Apoptosis, autophagy, RNA silencing, antiviral proteins
- Innate immune system: Induced by infection
- Adaptive immune system: Tailored to pathogen; memory





Virology Live 2021 • Vincent Racaniello

Principles of Virology, ASM Press

#### **Leukocytes and Lymphocytes**

#### Leukocytes



- Leukocyte: general term for white blood cell (lymphocytes, neutrophils, eosinophils, macrophages)
- Lymphocyte: Subset of leukocytes (T, B, NK cells; have variable antigen-detecting cell surface receptors



#### Innate instruction of adaptive immunity



#### **Exogenous antigen presentation**



Lymphocyte activation triggers massive cell proliferation



- 1/10,000 1/100,000 B or T cells recognize antigen
- 1-2 weeks: 1,000 50,000 fold amplification
- Lymphadenopathy



#### Mucosal and cutaneous immune system





**GALT = gut-associated lymphoid tissue MALT = mucosa-associated lymphoid tissue** 

#### Go to:

## b.socrative.com/login/student room number: virus

#### What is a property of innate instruction of adaptive immunity?

- A. Presentation of viral peptides on MHC II to CD4 T cells
- B. Endocytosis of viral proteins
- C. Activation of DCs by cytokines
- D. Sensing by TLRs
- E. All of the above



Virology Live 2021 • Vincent Racaniello

Principles of Virology, ASM Press

#### **Antibodies**





Contraction not waning!

Virology Live 2021 • Vincent Racaniello

Principles of Virology, ASM Press

#### Antibodies, antigens, and epitopes

- Antigen: molecule that induces an immune response (protein, DNA, RNA, lipid, polysaccharide)
- Epitope: part of antigen bound by antibody or T-cell receptor
- Monoclonal antibody: against a single epitope
- Serum contains a mixture of monoclonal antibodies: polyclonal



#### Generation of B cell receptor diversity



#### **Antibody response**





Virology Live 2021 • Vincent Racaniello

Principles of Virology, ASM Press

## Secretory IgA



Virology Live 2021 • Vincent Racaniello Principles of Virology, ASM Press

### A rapid assay for serum antibodies to SARS-CoV-2









https://youtu.be/HvXCISbrK9Q

#### **Neutralizing antibodies**

- Essential defense against many virus infections
- Neutralize virus particles in the blood, prevent virus spread
- IgA at mucosal surfaces (secretory antibody) blocks entry
- Some neutralizing antibodies are important for recovery from infection
- Not all anti-viral antibodies neutralize infection!



Virology Live 2021 • Vincent Racaniello Principles of Virology, ASM Press

## **Neutralizing antibodies**



## Passive antibody protects against poliomyelitis



## Convalescent sera and monoclonal antibodies for COVID-19 treatment or prevention



Serum is the liquid that remains after the blood has clotted *Plasma* is the liquid that remains when clotting is prevented with the addition of an anticoagulant. injection

(35 mg/mL)

## **Neutralization antigenic sites**

Some antibodies bind but do not neutralize!



**Poliovirus** 



Influenza virus HA

Virology Live 2021 • Vincent Racaniello Principles of Virology, ASM Press





#### mAb Fab fragment bound to SARS-CoV-2 spike



### **Neutralizing antibodies**



Virology Live 2021 • Vincent Racaniello Principles of Virology, ASM Press

#### **Antibody-dependent cellular cytotoxicity**



Virology Live 2021 • Vincent Racaniello

Principles of Virology, ASM Press

## Disease protection by non-neutralizing antibodies



### **IgA-stimulated NETosis**



- Stimulated by IgA-virus complexes
- Non-neutralizing Ab
- Involves Fc receptors on neutrophils

### **Evasion of antibody**





Influenza HA

Antigenic variation

#### Go to:

## b.socrative.com/login/student room number: virus

#### Which statement about anti-viral antibodies is incorrect:

- A. They are important for protection against viral infections
- B. They only neutralize virus infectivity
- C. They may block virus attachment to cells
- D. They can be found at mucosal surfaces
- E. IgM is the first to appear, then IgG

#### **Cell mediated immunity**

- Essential for clearing most viral infections
- CTL and target cells form an immunological synapse
- Lysis of target cell
- Countermeasures



#### **Endogenous antigen presentation**





TAP = transporter associated with antigen processing

Virology Live 2021 • Vincent Racaniello Principles of Virology, ASM Press

## **Countering MHC I**

| MHC I pathway                                                                  | Viral protein                                                  |
|--------------------------------------------------------------------------------|----------------------------------------------------------------|
| MHC I synthesis                                                                | Lentivirus Vpu                                                 |
| TAP synthesis TAP function                                                     | EBV vIL-10, HCMV UL111A<br>HCMV US6, HSV ICP47                 |
| MHC I transport Retain in ER Dislocate to cytoplasm Increase MHC I endocytosis | HCMV US3, Ad E3-19K<br>HCMV US11, US2<br>HIV nef, HHV-7 K3, K4 |



Virology Live 2021 • Vincent Racaniello

Principles of Virology, ASM Press

#### Cytotoxic T lymphocyte (CTL) lysis



- Lysis of target cell by two mechanisms
  - Release of cytoplasmic content
  - Apoptosis



# Antibody vs cellular immunity in protecting against monkeypox virus disease

| Day of vaccination | Immune<br>manipulation | Neutralizing Ab<br>day 22 | Monkeypox<br>infection | Fatality |
|--------------------|------------------------|---------------------------|------------------------|----------|
| 0                  | None                   | 800-6400                  | Day 28                 | 0/4      |
| 0                  | B cell depletion       | 42-59                     | Day 28                 | 3/4      |
| 0                  | CD8 cell<br>depletion  | 268-2963                  | Day 28                 | 0/4      |

# For some infections, CTL response is more important than the antibody response

#### How is the correct response made?

Begins in lymph tissues where sentinels tell naive B and T cells nature of invader



# This decision is made in part by special T helper cells (Th cells)

- Th cells make contact in the lymph nodes with sentinel DCs and macrophages
- Information exchanged (peptides, cytokines) causes differentiation to Th1 or Th2



#### Go to:

## b.socrative.com/login/student room number: virus

## For some infections, CTLs are more important for protection than antibody. How is the CTL-antibody balance determined?

- A. By B lymphocytes
- B. By intrinsic defenses
- C. By autophagy of infected cells
- D. By the mix of peptides and cytokines presented by DCs
- E. It depends on whether the capsid is icosahedral or helical

#### Adaptive responses also provide *memory*



- If the host is subsequently infected by the same virus, the response will be rapid and specific
  - Innate responses don't have memory
- Memory: the basis for vaccination

Virology Live 2021 • Vincent Racaniello

#### Infection provides immune memory





- 1781: outbreak of measles on Faroe Islands
- Next 65 years, islands free of measles
- 1846: another outbreak of measles; none of those who survived the 1781 epidemic were infected
- Immune memory may last a long time, maintained without re-exposure to virus

#### **Immunological memory**



### **Immunological memory**

- Memory B cells
  - In spleen, lymph nodes
  - Do not produce antibodies unless stimulated by Ag
- Long lived plasma cells
  - Bone marrow
- Memory T cells



| Disease                   | Persistence of antibody |
|---------------------------|-------------------------|
| Systemic infections       |                         |
| Chikungunya               | 30 yr                   |
| Rift Valley fever         | 12 yr                   |
| Dengue                    | 32 yr                   |
| Yellow fever              | 75 yr                   |
| Measles                   | 65 yr                   |
| Mumps                     | 12 yr                   |
| Poliomyelitis             | 40 yr                   |
| Hepatitis A               | 25 yr                   |
| Smallpox                  | 40 yr                   |
| Vaccinia                  | 75 yr                   |
| Rubella                   | 14 yr                   |
| Mucosal Infections        |                         |
| Coronavirus disease       | 12 mo                   |
| Influenza                 | 30 mo                   |
| RSV disease               | 3 mo                    |
| Rotavirus gastroenteritis | 12 mo                   |

#### **Generation of memory T cell diversity**



Virology Live 2021 • Vincent Racaniello

Principles of Virology, ASM Press

# Inflammation provides integration and synergy within the immune system



Virology Live 2021 • Vincent Racaniello

Principles of Virology, ASM Press



Next time: Mechanisms of pathogenesis